
TeenCoderTM: Java Programming

210

Lesson Three: Option Input

Option controls allow users to select one or more choices from a small group. There are two main types of
options – radio buttons and checkboxes.

The JRadioButton Control

The radio button control is used when you want the user to select only one option
from a small group of items. The user can only select one radio button option at a
time. For instance, in this example screen, the user can select either “Red”, “Blue” or
“Yellow”. Each radio button is represented by a JRadioButton object.

When you create a JRadioButton object, pass in the text you want displayed next to the selection circle.
Don’t forget to assign the object to a class-level member variable so you can access it later!

JRadioButton redRadio = new JRadioButton("Red");
JRadioButton blueRadio = new JRadioButton("Blue");
JRadioButton yellowRadio = new JRadioButton("Yellow");

Radio button controls should work together in a group. When the user selects one button, the other buttons
in the group are automatically de-selected. In order to make a set of JRadioButton objects a related group,
you need to create a ButtonGroup container and then add each JRadioButton to the group.

ButtonGroup myGroup = new ButtonGroup();
myGroup.add(redRadio);
myGroup.add(blueRadio);
myGroup.add(yellowRadio);

Finally, you need to add each JRadioButton object to your panel. Your layout manager will determine how
the buttons are arranged on the screen. In the example above we have used a vertical box layout.

myPanel.add(redRadio);
myPanel.add(blueRadio);
myPanel.add(yellowRadio);

If you want to create multiple groups of radio buttons on the same screen, create one ButtonGroup object
for each set of radio buttons. The radio buttons within a specific ButtonGroup will work as a team,
independent of any other radio buttons on the screen.

To figure out which radio button in a group is currently selected, you can call the isSelected() method on
each control. If method returns true, the button is selected. If it returns false, the button is not selected.

Chapter Twelve: Swing Input Controls

211

if (redRadio.isSelected() == true)
{
 // the user selected the red radio button
}

Your best chance to call isSelected() is when some other event happens, such as a button press. Also, each
time the user clicks on a radio button, an action event will be sent to an ActionListener. To demonstrate, we
first implement the ActionListener interface and make each JRadioButton a class member variable:

class MyProgram implements ActionListener
{
 JRadioButton blueRadio = null;
 JRadioButton redRadio = null;
 JRadioButton yellowRadio = null;

Then, after each variable has been initialized, call the addActionListener() method with this as a parameter:

redRadio.addActionListener(this);
blueRadio.addActionListener(this);
yellowRadio.addActionListener(this);

Now in the actionPerformed() method you can check the event source to find which button was clicked:

 public void actionPerformed(ActionEvent event)
{

 Object control = event.getSource();
 if (control == redRadio)
 {
 // red radio button was selected
 }
 else if (control == blueRadio)
 {
 // blue radio button was selected
 }
 else if (control == yellowRadio)
 {
 // yellow radio button was selected
 }

}

TeenCoderTM: Java Programming

212

You can programmatically set the currently selected radio button in any group by using the JRadioButton
setSelected() method with a true parameter:

blueRadio.setSelected(true);

You can also use this same method to clear a selected radio button with a false
parameter:

blueRadio.setSelected(false);

The JCheckBox Control

The check box control is very similar to the radio button control. Check boxes are
typically grouped together and offer the user a small selection of options. The biggest
difference is that a user can select more than one check box at a time (or no check
boxes at all)! The check box controls are independent and do not work as a group, even
though they are usually arranged in visual groups on the screen.

In Swing, a radio button is created with the JCheckBox class. Using JCheckBox is almost identical to using
a JRadioButton, except you never need to put JCheckBoxes in a ButtonGroup. You can construct a
JCheckBox with the text to display next to the text box. You can call the isSelected() and setSelected()
methods to see if a check box is selected or programmatically set or clear a checkbox. You can also receive
an action event through the ActionListener interface each time a checkbox is clicked

Using Borders

It’s often a good idea to also include a visual border around groups of radio buttons
and check boxes. You can do this with the same Border class we discussed earlier for
JPanels. Remember the BorderFactory is used to create a Border object. You can
get different kinds of borders by calling different methods on the BorderFactory. A
handy type of border for radio buttons and check boxes is a “Titled” border, which is
a simple frame with a text description at the top. Here is an example:

Border myBorder = BorderFactory.createTitledBorder("Shapes");

Chapter Twelve: Swing Input Controls

213

You still need to assign a border to a JPanel, so you would create
a new JPanel for each group of radio buttons and check boxes.
You can then assign a different Border to each JPanel. Here is
an extended example showing two sets of controls on the screen
at the same time. For simplicity we are not making class member
variables or putting radio buttons into a ButtonGroup as you
would normally! The code below will produce the example
shown to the right.

JFrame myFrame = new JFrame();
myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel myPanel = (JPanel)myFrame.getContentPane();
myPanel.setLayout(new BoxLayout(myPanel,BoxLayout.Y_AXIS));
myPanel.setBorder(BorderFactory.createEmptyBorder(10,10,10,10));

JPanel shapePanel = new JPanel(); // create JPanel for check boxes

 // add new check boxes to the shape panel

shapePanel.add(new JCheckBox("Circle"));
shapePanel.add(new JCheckBox("Square"));
shapePanel.add(new JCheckBox("Triangle"));

// create a titled border for the shape panel
shapePanel.setBorder(BorderFactory.createTitledBorder("Shapes"));
myPanel.add(shapePanel); // add the color panel to the main content pane

JPanel colorPanel = new JPanel(); // create JPanel for check boxes

 // add new radio buttons to the color panel
colorPanel.add(new JRadioButton("Red"));
colorPanel.add(new JRadioButton("Blue"));
colorPanel.add(new JRadioButton("Yellow"));

// create a titled border for the color panel
colorPanel.setBorder(BorderFactory.createTitledBorder("Colors"));
myPanel.add(colorPanel); // add the color panel to the main content pane

myFrame.pack(); // pack all of the controls
myFrame.setVisible(true); // finally, show the screen!

