Thank you for downloading this sample of Sonlight's Science A Instructor's Guide (what we affectionately refer to as an IG). In order to give you a full perspective on our Instructor's Guides, this sample will include parts from every section that is included in the full IG.

Here's a quick overview of what you'll find in this sample.

- A Quick Start Guide
- A 3-week Schedule

SONLIGHT'S “SECRET” COMES DOWN TO THIS:

We believe most children respond more positively to great literature than they do to textbooks. To properly use this sample to teach your student, you will need the books that are scheduled in it. We include all the books you will need when you purchase a package from sonlight.com.

Curriculum experts develop each IG to ensure that you have everything you need for your homeschool day. Every IG offers a customizable homeschool schedule, complete lesson plans, pertinent activities, and thoughtful questions to aid your students' comprehension. It includes handy teaching tips and pointers so you can homeschool with confidence all year long.

If you need any help using or customizing our IGs, please reach out to our experienced homeschool advisors at sonlight.com/advisors.

We hope you enjoy using this sample. For even more information about Sonlight's IGs, please visit: sonlight.com/ig. It would be our pleasure to serve you as you begin your homeschool journey.

If you like what you see in this sample, visit sonlight.com/science to order your Science package.

Blessings!

Sarita Holzmann,
Co-founder and president
of Sonlight Curriculum
Dear Prospective Sonlighter,

Thank you so much for downloading this sample Sonlight Instructor’s Guide (referred to as the Science Schedule Plus at this level). Here’s a quick overview of what you’ll find in the full IG...and in this sample.

Science consists of two main pieces:
- A weekly SCHEDULE
- Plus some EXTRA HELPS

SCHEDULE Overview

- The Science Schedule Plus weekly schedules let you see your entire week at a glance.
- The first column lists the titles of each book or assignment. Follow either the Textbook OR the CD-ROM version (but not both).
- The remaining columns include the day-by-day assigned pages or tasks.
- Check off or date each assignment as you go to create instant records of what you and your children have done.

Some customers follow our schedules rigidly: they do everything listed for the day during that day. Others read ahead, or drop an assignment, or work through several days’ worth of one type of assignment one day, and several days’ worth of another subject on another day. . . .

It’s your Instructor’s Guide. Use it as best suits your needs.
EXTRA HELP Overview

Immediately following each week’s schedule page, you will find vocabulary your children will need to memorize.

Your primary task: read the assigned pages in the Textbook or on the computer (CD-ROM) listed in the schedule, then memorize the vocabulary terms.

You’ll find comprehension questions throughout the textbook or CD-ROM as well as tests for each module. Tests can be printed out from the CD-ROM or sold as a separate packet with the Textbook version.

The back section of the Science Schedule Plus includes experiment write-ups to use in conjunction with the labs you complete each week. Each experiment is scheduled out for you.

Enjoy your sample. . . . And we look forward to serving you in the very near future.

Sincerely,

Sarita Holzmann, President

PS: For more information about Sonlight’s Instructor’s Guides, please visit sonlight.com/IGs
I was feeling overwhelmed and afraid that I lacked what it takes to successfully homeschool my kids,” writes Jennifer A of Battle Creek, MI. “I contacted an Advisor on Sonlight’s online chat tool and got the help I needed. The next day I was able to put her counsel into practice!”
Science

Schedule Plus for Apologia Chemistry

By Sandy Hotz
Table of Contents

1 Introduction to Your Schedule Plus
 i Welcome
 3 Table of Contents
 5 Introduction
 5 At a Glance
 5 An Overview of This Year’s Studies
 5 Tips for Using Your Calculator
 6 Corrections and Suggestions
 6 How to Use the Experiment Forms
 7 Apologia Chemistry—Science Supplies

2 Schedule and Notes
 Sonlight Curriculum® “Apologia Chemistry”
 Schedule and Notes

3 Experiment Forms
Section One
Introduction to Your Instructor’s Guide
At a Glance

Our goal in teaching science to high school students is to make them aware of the amazing realities around them and how complex and detailed this world is in which we live. You may want to join your student in this adventure, offer support as needed, or allow him to work through this book on his own since it is written to the student. Many of the science concepts he has been exposed to in the past will now come into sharper focus with more detailed study in certain disciplines.

- Exploring Creation With Chemistry includes a basic study in the field of chemistry.
- It is a good place to start for students in high school.
- We stress mastery of concepts and vocabulary at this level.

Your student:

- Will be introduced to atoms and molecules, chemical and physical changes, stoichiometry, atomic and molecular structure, acids and bases, as well as other related topics, along with the corresponding vocabulary.
- Will have concepts reinforced through the labs.
- Can use this class as a stepping-stone into Advanced Chemistry.

We include:

- Sample Experiment Forms to be used as you work through the scheduled labs.
- Weekly vocabulary lists.
- A weekly planning list to determine the lab materials needed for the coming week, as well as a look ahead to the needed items for the next week.

An Overview of this Year’s Studies

Each of the 16 modules is broken down into daily readings. Most modules are scheduled to be completed in two weeks, with four modules taking three weeks. It is important to read the introductory pages in the textbook and the Solution’s Manual.

In each week’s schedule, we have noted the science supplies needed from the Apologia Chemistry Supplies Kit (350–15). You may have also purchased the optional rubber gloves. If you do not own the Apologia Chemistry Supplies Kit or the gloves, the book gives some other suggestions, such as glasses to take the place of beakers. Please heed the warnings about breakage. Also, note the instructions on cleaning and the reuse of household items after using them in an experiment. You will find this information on page vii of the textbook. You will need some type of mass scale to do those experiments. We also strongly recommend rubber gloves as some of the materials (such as toilet bowl cleaner and lye) can burn your skin.

To enable you to plan ahead, we will alert you to supplies we think you might need to purchase before you do the next week’s experiments. We list these items the week before the experiment. We hope this feature will enable you to feel well-prepared and organized for your science adventure!

Your student will want to use a scientific calculator for this class. It is most helpful if it at least has the option to use parentheses, and put in exponents in addition to other basic functions. If you would like to use the same calculator for physics, then it should also have sin, cos, tan⁻¹, sin⁻¹, and square root capabilities. Tips for using the calculator follow, along with notes about typical pitfalls for many students.

You will also find Experiment Forms at the back of this guide. Guidelines for how you might expect your student to use them are in this Introduction. You are welcome to copy these as needed for your family’s use. Or you may prefer to come up with your own form.

Testing

There is a test for each of the 16 modules throughout the year. Because of this, we have not scheduled any of the quarterly tests as this would have taken away some of the extra time given for some of the harder modules. You may add a quarterly test after every four modules, if you prefer. One way of scheduling would be to complete the three week modules in two weeks and placing a quarterly test after every fourth module.

While we do feel that the quarterly tests are a useful evaluation tool, we don’t feel they are “required.” Certainly the end-of-module study guide questions and tests are sufficient to determine your student’s understanding of the material. If you are concerned about long-term retention, you may find the quarterly tests to be helpful.

Tips for Using your Calculator

It is very important that you become familiar with how to use the calculator due to the large amount of math in this course. Many times the final answer is wrong, not because of the set-up, but because it was entered into the calculator incorrectly.

There are numerous calculators on the market. Not all scientific calculators are marked the same way or have all the same options. Therefore the following may need to be adapted for yours in particular.

Here we offer help with the most common errors. We have not included units in these demonstration equations so you can generalize for any similar math set-up. However, it is very important to keep track of your units when doing the actual problem.

Basics

Whether you have a standard scientific calculator or a graphing calculator, you will need to find:

- parenthesis ()
- the EE, EXP, 10x (or something similar) button. Often any one of these might be used with the “2nd” or “shift” button.
• x^2 = this button will square the number you enter.
 i.e. $15^2 = 15 \times 15 = 225$
• \wedge = this is used when you have to multiply a number by itself more than twice: i.e., $15^3 = 15 \times 15 \times 15 = 3375$
 (or 3.4×10^3) using significant figures
• Square root $\sqrt{}$
• ANS (answer key; again may be in conjunction with the yellow “2nd” button)

Before You Begin

First check to make sure your calculator is in DEG (degree) mode. You can usually see the DEG on the screen once it is turned on. If it says anything different, check your manufacturer’s directions for changing it back to Degree mode.

Let’s Practice

A number is made negative by using the (-) or (+⁄-) button which is often found by the decimal point. Do not use the subtraction sign to designate a negative number.

You will enter multiple numbers that are in scientific notation (5.6×10^6). This is quickly entered by

\[
5.6 \text{ EE } 6
\]

Remember to get the EE, EXP, 10x or whatever your calculator uses for this function, you may need to push the “2nd” button or “shift” button first.

Try it as a number with a negative exponent: 5.6×10^{-6}

\[
5.6 \text{ EE } (-) 6
\]

Remember the (-) is not the subtraction sign.

Some students are in the habit of using the “$\times 10^\wedge$” keys for these same numbers, but that is not recommended since it oftentimes results in wrong answers unless the student remembers to use parentheses when using that process. For an understanding of what is happening, the number 4.5×10^3 is telling the calculator it has two numbers that are being multiplied together (4.5 is multiplied by 10^3), whereas $4.5 \exp 3$ is identifying the entry as one complete number.

Equations

\[
\frac{0.15 \cdot 32}{27} = \frac{0.15 \times 32}{27} =
\]

And your answer should be .17777 rounded to .18

However, when you have multiple numbers in the denominator it is most efficient to use parentheses.

\[
\frac{0.15 \cdot 32}{27 \cdot .30} = \frac{(0.15 \times 32) \div (27 \times .30)}{\cdot .30} = .59
\]

Many students want to put this type of problem in as follows: $0.15 \times 32 \div 27 \times .30$ = but their answer will be wrong (.053) because you have just multiplied .30 to the answer so far rather than dividing it out since it is in the denominator.

Your other option is to remember what you are doing (dividing out each number in the denominator).

\[
0.15 \times 32 \div 27 \div .30 = .59
\]

Square Root

If you need to get the square root of the answer above (once you obtain the .59) then press the $\sqrt{}$ button (which may first require pressing the “2nd” or “shift” button). Then press the ANS button (which may first require pressing the “2nd” or “shift” button). This last button will take your previous answer and solve for the square root.

Remember your parentheses help to separate sections. It is also important to close the parentheses.

One last try …

\[
1.14^2 = .14 \times 2 \div (.121 \times .234 \wedge 3) = 838
\]

\[
.121 \times .234^3
\]

Corrections and Suggestions

Since we at Sonlight Curriculum are constantly working to improve our product development, we would love it if we could get you to help us with this process.

Whenever you find an error anywhere in one of our Instructor’s Guides, please check our updates page for the latest information at www.sonlight.com/curriculum-updates.html.

Report new information by sending a short e-mail to: IGcorrections@sonlight.com. It would be helpful if the subject line of your e-mail indicated where the problem is. For instance, “Apologia Chemistry Schedule Plus/Section Two/Week 1/Schedule.”

If while going through our curriculum you think of any way we could improve our product, please e-mail your suggestions to: IGsuggestions@sonlight.com. If you know of a different book we should use, if you think we should read a book we assign at a different point in the year, or if you have any other ideas, please let us know.

How to Use the Experiment Forms

Question/Title

This usually comes directly from the title of the experiment/lab title at the top of the experiment in the book. It may help to put it into a question so you can fit the pieces together when you get to the inference at the end.

If the title isn’t revealing enough, make sure you read the experiment carefully all the way through. Then look at the subheading and read the paragraph preceding the experiment. All those things will help you write a more informative title.
Materials

List those materials that help you identify the experiment.

Method

Briefly write down what is to be done during this experiment. It does not need to restate each step as listed in the book, as you should know what the experiment involves. If there are several parts to the procedure, write each down. For example: If you are to hold a comb just above small pieces of aluminum foil first without pulling the comb through your hair and then again after pulling the comb through your hair, write both parts down. Do not skip a part of the procedure even if you know nothing will happen.

Hypothesis

A hypothesis is an educated guess. Often you know what should happen after reading the experiment. Still, write down what you expect to happen. You do not need to write "why" because that will come later. Do not add inference to your hypothesis. For instance:

“`The steady stream of water will bend toward the charged comb because the partial positive charges are attracted to the negative charge in the comb whereas the steady stream of oil will not bend because it is a purely covalent compound …”`

Instead write down just what you expect to see.

“`The steady stream of water will bend toward the charged comb, however there will be no change in the steady stream of oil.”`

Observation

Be detailed. Write down what you see in more than general terms. For instance: to say something bubbled is not enough. That statement can cover small bubbles forming in a substance to bubbling so rapidly and violently it comes to the top of the beaker and spills over! So, you shouldn’t use the same description for both of these scenarios. It is important to be detailed in your descriptions.

“`The toilet bowl cleaner quickly foamed approximately halfway up the beaker where it stayed as it continued to react with the eggshell.”–Or– “Once the yeast was added and the beaker swirled, then the reaction included large bubbles which rose quickly until they hit the watch glass and still pushed out of the spout to the outside of the beaker. Much of the yeast could still be seen sitting on the top of the bubbles.”`

Inference

This is the heart of the experiment. So far you wrote down what you were looking for (question), what you used (materials), what you did (procedure), what you expected to happen (hypothesis), and what actually did happen (observation/data). Now it is time to write up what you learned. This is not a place to say “… it is just as I expected” Or “… my hypothesis was correct.” Write what you actually learned by tying your question and hypothesis together and then looking at your data.

Often you will find the information just following the experiment. The authors are careful to help you see what you should have learned. But sometimes you have to remind yourself what you were looking for. And you need to be complete.

To say that the yeast sped up the reaction, but nothing more, is not enough. Yeast doesn’t necessarily cause every reaction it joins to speed up. You should mention that the yeast was the catalyst that sped up the decomposition of hydrogen peroxide while it didn’t get used up in the process. This information could actually be found in the title of that particular experiment (14.2).

The point of an experiment is to demonstrate and reinforce a concept you have learned in a particular section of your chemistry book. Take advantage of spending the time to see what you are supposed to be learning from each experiment. If you remember your experiments, you can refer back to them when reviewing the concepts. Remember the experiments are not put there for something to do, but rather to apply what you have learned in the written word by seeing it in action.
Apologia Chemistry—Science Supplies

<table>
<thead>
<tr>
<th>350–15 (Apologia Chemistry Supplies Kit) Item</th>
<th>Week(s) Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety glasses</td>
<td>1, 2, 3, 4, 5, 9, 10, 11, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 33, 35, 36</td>
</tr>
<tr>
<td>Balloons</td>
<td>1, 16, 25</td>
</tr>
<tr>
<td>100-ml beaker</td>
<td>3, 4, 20, 22, 23, 31, 32, 33</td>
</tr>
<tr>
<td>250-ml beaker</td>
<td>3, 4, 20, 22, 23, 26, 31, 33</td>
</tr>
<tr>
<td>Watch glass</td>
<td>3, 19, 32</td>
</tr>
<tr>
<td>Mass scale</td>
<td>3, 11, 16, 20, 22, 25, 27, 28</td>
</tr>
<tr>
<td>Stirring rod</td>
<td>3, 4, 14, 19, 20, 22, 31, 35</td>
</tr>
<tr>
<td>9 volt battery</td>
<td>3</td>
</tr>
<tr>
<td>Insulated wire</td>
<td>3, 36</td>
</tr>
<tr>
<td>Funnel</td>
<td>4, 16, 22</td>
</tr>
<tr>
<td>Filter paper</td>
<td>4, 22</td>
</tr>
<tr>
<td>Alcohol burner and stand</td>
<td>4, 20, 22, 26, 31</td>
</tr>
<tr>
<td>Aluminum foil</td>
<td>5</td>
</tr>
<tr>
<td>Styrofoam cups</td>
<td>9, 27</td>
</tr>
<tr>
<td>Test tubes</td>
<td>10, 19, 22, 31, 33</td>
</tr>
<tr>
<td>Test tube brush</td>
<td>10</td>
</tr>
<tr>
<td>50-ml graduated cylinder</td>
<td>11, 14, 16, 20, 22, 23, 25, 32</td>
</tr>
<tr>
<td>Eyedroppers</td>
<td>14, 20, 33, 35</td>
</tr>
<tr>
<td>Blue litmus paper</td>
<td>19</td>
</tr>
<tr>
<td>Red litmus paper</td>
<td>19</td>
</tr>
<tr>
<td>Thermometer</td>
<td>22, 23, 25, 26, 27, 28</td>
</tr>
<tr>
<td>Iodine</td>
<td>35</td>
</tr>
</tbody>
</table>
Section Two
Schedule and Notes
Week 1—Module 1

<table>
<thead>
<tr>
<th>Date:</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
</table>

On Your Own

1.1–1.5 1.6–1.11 1.12 1.13–1.14

Experiments

1.1 and 1.2

Vocabulary

<table>
<thead>
<tr>
<th>Important Terms, Facts, and Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry: The study of matter. [p. 1]</td>
</tr>
<tr>
<td>Matter: Anything that has mass and takes up space. [p. 1]</td>
</tr>
<tr>
<td>Gram: The metric unit for mass. [p. 6]</td>
</tr>
<tr>
<td>Mass: Measures how much matter exists in an object. [p. 6]</td>
</tr>
<tr>
<td>Weight: Measures how hard gravity pulls on that object [p. 6]</td>
</tr>
<tr>
<td>Slug: The English unit for mass. [p. 6]</td>
</tr>
<tr>
<td>Pounds: The English unit for weight. [p. 6]</td>
</tr>
<tr>
<td>Newton: The metric unit for weight. [p. 6]</td>
</tr>
<tr>
<td>Meter: The metric unit for distance. [p. 6]</td>
</tr>
<tr>
<td>Foot: The English unit for distance. [p. 6]</td>
</tr>
<tr>
<td>Volume: A measure of how much space an object occupies. [p. 6]</td>
</tr>
<tr>
<td>Liter: The metric unit for volume. [p. 6]</td>
</tr>
<tr>
<td>Gallon: The English unit for volume. [p. 6]</td>
</tr>
<tr>
<td>Seconds: The metric and English units for time. [p. 6]</td>
</tr>
<tr>
<td>1 cubic centimeter is the same as 1 millimeter (1 cm³ = 1 mL). [p. 17]</td>
</tr>
<tr>
<td>Meniscus: The curved surface of a liquid. [p. 21]</td>
</tr>
<tr>
<td>Accuracy: An indication of how close a measurement is to the true value. [p. 21]</td>
</tr>
</tbody>
</table>

©2019 by Sonlight Curriculum, Ltd. All rights reserved.

©2019 by Sonlight Curriculum, Ltd. All rights reserved.

1. Define vocabulary terms and names found in each day’s reading.
2. When supplies are listed as “We provide:” they are materials found in your Chemistry Supplies Kit (350–15). When supplies are listed as “You provide:” they are materials you can generally find around your home.

Other Notes

If you answer a question or solve a problem and do not list units with the numbers, your answer will be considered incorrect [p. 5]
Precision: An indication of the scale on the measuring device that was used. [p. 21]

Significant figures:
1. All nonzero digits are significant.
2. All zeros in front of the first 1-9 digit are not significant.
3. All zeros between two significant figures are significant.
4. All zeros at the end of a number and to the right of the decimal point are significant. [p. 23]

Scientific Notation Rules:
1. Place only one digit (not a zero) in front of the decimal point.
2. Only significant figures go in front of the multiplication sign. [p. 26]

Adding and Subtracting with Significant Figures: When adding and subtracting measurements, round your answer so that it has the same precision as the least precise measurement in the calculation. [p. 28]

Multiplying and Dividing with Significant Figures: When multiplying and dividing measurements, round the answer so that it has the same number of significant figures as the measurement with the fewest significant figures. [p. 28]

The definitions of the prefixes in the metric system and the integers used in fractions are not considered when determining the significant figures in the answer. [p. 29]
The page contains a schedule for Week 2—Module 1, with dates and assignments listed for each day.

Vocabulary

Three Temperate Scales: Fahrenheit, Celsius, and Kelvin. [p. 31]

If ice and water are thoroughly mixed: the temperature of the mixture will stay the same (0.0°C or 32.0°F), regardless of the amount of ice or water present. [p. 32]

Boiling water is always at the same temperature: (100.0°C or 212.0°F at standard atmospheric pressure) whether it is boiling rapidly or hardly boiling at all. [p. 32]

Absolute temperature scale: Kelvin temperature scale is described as an absolute temperature scale because you can never get to or go below 0 Kelvin. [p. 33]

Hypothesis: An educated guess that attempts to explain some aspect of the world around us. [p. 35]

Theory: A hypothesis that is confirmed by more rigorous experimentation. [p. 35]

Scientific Law: A theory that has been confirmed over and over again by experimentation. [p. 35]
Vocabulary | Important Terms, Facts and Principles

Continuous theory of matter: The concept once thought that substances were composed of long, unbroken blobs of matter. [p. 45]

Discontinuous theory of matter: The concept that matter is composed of tiny individual particles. [p. 46]

The Law of Mass Conservation: Matter cannot be created or destroyed; it can only change forms. [p. 46]

Decomposition: The process by which a substance is broken down into its constituent elements. [p. 50]

Element: Any substance that cannot be broken down (decomposed) into simpler components. [p. 50]

Even though hydrogen is left of the jagged line, it is always considered a nonmetal. [p. 53]

Metalloids: Elements that have some metal properties and some nonmetal properties. [p. 53]

Compound: Substances that can be decomposed into elements by chemical means. [p. 54]

The Law of Definite Proportions: The proportion of elements in any compound is always the same. [p. 54]

Dimensionless quantities: Numbers that have no units. [p. 57]
The Law of Multiple Proportions: If two elements combine to form different compounds, the ratio of masses of the second element that react with a fixed mass of the first element will be a simple, whole-number ratio. [p. 57]

Atoms: The basic building blocks of matter. [p. 61]

Element: A substance that consists of identical atoms. [p. 61]

Molecule: When atoms join together. [p. 61]

Compound: (second definition) A substance that consists of identical molecules. [p. 61]

Ionic compound: A compound contains at least one metal atom and at least one nonmetal atom. [p. 66]

Covalent compound: A compound that is made up solely of nonmetal atoms. [p. 66]
Chemistry Experiment Write-Up—Example 1

Date: ____________________

Experiment: # ____________________

Title/Purpose: __

Supplies: __
__
__
__

Procedure: __
__
__
__
__

Hypothesis: __
__
__
__
Data/Observation

__
__
__
__
__
__
__
__
__
__

Inference: (What was learned)

__
__
__
__
__
__
__
__
__
__
__
__
__
Chemistry Experiment Write-Up—Example 2

Date:

Experiment: #

Purpose (from the introduction):

Supplies:

Procedure:

Observation/Data: (what happened)

Conclusion: (what was learned)
Intro to the World: Cultures
Grades: K-2 | Ages: 5-7

Young adventurers: Explore God’s big world

Set the stage for future learning with a positive introduction to lifelong academic curiosity. A children’s book collection designed for first-graders to see and experience the world. In this 20-week program, your children will begin using dynamic books in the real world and the present.

Explore the cultures of the world—past and present—through exciting stories and activities. Your students will develop a healthy curiosity about the world around them.

Learning about different cultures also leads to conversations—about foods, about clothing, about traditions. Students spread goodwill and begin to understand how they display their love and respect for others, no matter their culture or country.

100% money back guarantee. You’ll love Sonlight or get your money back.

LOVE TO LEARN, LOVE TO TEACH™
sonlight.com/guarantee

Request A FREE COPY!
SONLIGHT.COM